Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
2.
J Environ Manage ; 357: 120759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554453

RESUMO

Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.


Assuntos
Mudança Climática , Frutas , Melhoramento Vegetal , Produtos Agrícolas/genética , Horticultura , Fatores de Transcrição
3.
Environ Sci Pollut Res Int ; 31(14): 21235-21248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388975

RESUMO

Horticulture poses a significant ecological risk, as agrochemicals are applied more frequently and in larger quantities per unit of production compared to extensive crop fields. The native amphibian Rhinella arenarum serves as a reliable bioindicator of environmental health. This study aimed to assess genocytotoxic damage and demographic life history traits of R. arenarum inhabiting horticultural environments. Sampling was conducted in suburban sites in central Argentina: H1 and H2 (sites associated with horticultural activity) and a reference site, RS. Environmental parameters were recorded, and the frequency of micronuclei (Mn), nuclear abnormalities (ENA), and indicators of cytotoxic damage were determined in tadpoles and adults. Demographic variables (age at maturity, longevity, potential reproductive lifespan, size at maturity, modal lifespan) were calculated. The highest nitrate and phosphate values, along with low dissolved oxygen values, were recorded at sites H1 and H2. Organisms inhabiting horticultural environments exhibited higher frequencies of Mn and ENA, surpassing those recorded in previous studies on tadpoles from sites with extensive crop production. Size at maturity and age at maturity of females, as well as size at maturity, longevity, mean age, and mean adult SVL of males, were lower in horticultural sites. The results support the hypothesis that anuran populations inhabiting horticultural environments demonstrate a diminished health status attributed to subpar environmental quality. Monitoring endpoints at different biological levels provides information on the ecotoxicological risk for amphibians and human populations inhabiting nearby areas.


Assuntos
Bufonidae , Traços de História de Vida , Animais , Feminino , Masculino , Humanos , Bufo arenarum , Larva , Horticultura , Demografia
4.
J Environ Manage ; 351: 119978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169258

RESUMO

Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Mudança Climática , Dióxido de Carbono/análise , Agricultura , Produtos Agrícolas , Horticultura , Óxido Nitroso/análise , Metano/análise , Solo
5.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262958

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Tabaco , Melhoramento Vegetal , Horticultura
6.
Ann Agric Environ Med ; 30(3): 531-535, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772530

RESUMO

INTRODUCTION AND OBJECTIVE: One of the most frequent musculoskeletal disorders is neck pain (NP). NP can be associated with occupational activities and is more common among females than males. Horticulture is a branch of agriculture in which work is intensively manual, and characterized by repetitive tasks. The aim of the cross-sectional study was to analyze the association between pain intensity, neck disability index (NDI), and working conditions in terms of selected factors related to work in horticulture. MATERIAL AND METHODS: 44 women employed in horticulture met eligibility criteria (experienced necked pain). Five factors related to working conditions were investigated: work experience, upper extremity position, head position, prophylaxis, and stress frequency. NDI and visual analog scale (VAS) were used to investigate pain intensity and disability. RESULTS: It was found that the position of the upper limb at work and the frequency of stress were significantly associated with the VAS score (p=0.046 and p=0.02, respectively). With regard to NDI total score, a statistically significant association was found between work experience and stress frequency (p=0.02 and p=0.01, respectively). Analysis of the relationship between VAS and NDI total score showed a statistically significant weak positive correlation (R=0.39; p=0.01). CONCLUSIONS: NP and NDI are related to the activities that women working in horticulture have to perform. Stress seems to be an important factor in cervical problems among female workers leading to an increase in NP and disability.


Assuntos
Cervicalgia , Condições de Trabalho , Masculino , Humanos , Feminino , Medição da Dor , Estudos Transversais , Cervicalgia/epidemiologia , Cervicalgia/etiologia , Avaliação da Deficiência , Horticultura
7.
Biomolecules ; 13(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37627271

RESUMO

The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.


Assuntos
Oryza , Pesquisa , Agricultura , Produtos Agrícolas , Horticultura
8.
Phys Chem Chem Phys ; 25(34): 23150-23163, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603413

RESUMO

This study addresses the challenges of sustainable and efficient agricultural practices in the face of climate change and the destruction of agricultural lands by presenting the development of a novel plant growth LED based on Sm3+ and Tm3+ co-doped luminescent glasses with color-converting properties that emit blue and red light, resulting in an increased rate of photosynthesis and density of photosynthetically active radiation reaching the harvesting pigments. The developed LED exhibits photoluminescence (PL) peak positions ranging from 454 to 648 nm, with a spectral coverage of 50% and 39% of the absorption regions of chlorophyll a and chlorophyll b, respectively, resulting in an impressive 56% photoluminescence quantum yield (PLQY). Furthermore, the developed plant growth LED demonstrates robust performance, remaining unaffected by temperature cycles and extended operation periods. Using Romaine lettuce cultivated under identical conditions, a comparative study between the developed LED and commercially available plant growth LED is conducted, with the designed LED showing significant improvements in plant growth characteristics, including increased plant height, weight, number of leaves, and enhanced levels of chlorophyll a, chlorophyll b, and carotenoid content, while the root diameter is reduced, and the shoot-to-root ratio is diminished in comparison to the commercially available plant growth LED. The paper also compares the performance of Sm3+ and Tm3+ co-doped luminescent glass-based plant growth LED with other reported plant growth LED designs using different luminescent materials, exploring the impact of PLQY, PL position, and plant growing conditions. The results suggest that the developed LED system offers a more efficient and sustainable way of lighting for indoor horticulture and has significant implications for meeting the increasing food demands of the growing world population.


Assuntos
Horticultura , Luminescência , Clorofila A , Luz , Carotenoides
9.
Methods Mol Biol ; 2686: 453-494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540373

RESUMO

The advances in genomics and bioinformatics have made possible the study in non-model plants of phenotypes associated to flower development. Floriculture crops are an interesting source of traits associated to flower development such as the transition between zygomorphic and actinomorphic flowers or the production of flowers with double and triple corollas. In this chapter, we summarize the material and methods for the use of floriculture crops to study flower development using genomic tools, from the sequencing and assembly of a reference genome to QTL and RNA-Seq analysis to search candidate genes associated to specific traits.


Assuntos
Flores , Genômica , Flores/genética , Biologia Computacional , Fenótipo , Horticultura
10.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447965

RESUMO

This paper presents a personalized and smart flowerpot for ornamental horticulture, integrating 3D printing and cloud technology to address existing design limitations and enable real-time monitoring of environmental parameters in plant cultivation. While 3D printing and cloud technology have seen widespread adoption across industries, their combined application in agriculture, particularly in ornamental horticulture, remains relatively unexplored. To bridge this gap, we developed a flowerpot that maximizes space utilization, simplicity, personalization, and aesthetic appeal. The shell was fabricated using fused deposition modeling (FDM) in 3D printing, and an Arduino-based control framework with sensors was implemented to monitor critical growth factors such as soil moisture, temperature, humidity, and light intensity. Real-time data are transmitted to the Bamfa Cloud through Wi-Fi, and a mobile application provides users with instant access to data and control over watering and lighting adjustments. Our results demonstrate the effectiveness of the smart flowerpot in enabling automated monitoring of plant growth and environmental control. This innovation holds significant promise for advancing smart device development in ornamental horticulture and other related fields, enhancing efficiency, plant health, and overall user experience. Future research in this area has the potential to revolutionize horticultural practices and contribute to the advancement of smart agriculture.


Assuntos
Computação em Nuvem , Aplicativos Móveis , Impressão Tridimensional , Temperatura , Horticultura
11.
PLoS One ; 18(7): e0289320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523375

RESUMO

Peat is the most common used substrate in horticultural seedling production. To reduce peat in horticultural potted plant cultivation systems in general is an obstacle, even within the highly specialized horticultural industry. Next to soil-less cultivation systems as e.g. hydroponics, the horticultural industry is eagerly looking for suitable peat substitutes. The demands on these compounds are high, basically mimicking the physical properties of peat. A 100% replacement of peat for press-pots used in seedling production has not yet been found, and only mixes of peat and substrates exist. Several suitable peat substitutes with different properties are known, that usually are used as a share of a mixed peat-substitute substrate. A constrained mixture design was used to test substrates containing 50% v/v and 25% v/v peat and four peat substitutes (two composts and two wood fibers) for vegetable seedling production. By limiting the maximum quantities of each material to be added, there was no negative effect on the growth of Chinese cabbage (Brassica rapa subsp. pekinensis). This means a reduction in of peat to 25% v/v is possible without a change in substrate quality. The mixture design allowed a quick decision to be made regarding the most suitable peat-reduced mixtures. The surface response approach enabled the experimental results to be easily transferred to horticultural practices, additionally. This flexible and efficient method also allows the predictions to be used to meet specific crop management needs.


Assuntos
Brassica , Solo , Solo/química , Plântula , Verduras , Horticultura
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1883): 20220300, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37381847

RESUMO

Despite the global spread of intensive agriculture, many populations retained foraging or mixed subsistence strategies until well into the twentieth century. Understanding why has been a longstanding puzzle. One explanation, called the marginal habitat hypothesis, is that foraging persisted because foragers tended to live in marginal habitats generally not suited to agriculture. However, recent empirical studies have not supported this view. The alternative but untested oasis hypothesis of agricultural intensification claims that intensive agriculture developed in areas with low biodiversity and a reliable water source not reliant on local rainfall. We test both the marginal habitat and oasis hypotheses using a cross-cultural sample drawn from the 'Ethnographic atlas' (Murdock 1967 Ethnology 6, 109-236). Our analyses provide support for both hypotheses. We found that intensive agriculture was unlikely in areas with high rainfall. Further, high biodiversity, including pathogens associated with high rainfall, appears to have limited the development of intensive agriculture. Our analyses of African societies show that tsetse flies, elephants and malaria are negatively associated with intensive agriculture, but only the effect of tsetse flies reached significance. Our results suggest that in certain ecologies intensive agriculture may be difficult or impossible to develop but that generally lower rainfall and biodiversity is favourable for its emergence. This article is part of the theme issue 'Evolutionary ecology of inequality'.


Assuntos
Agricultura , Horticultura , Ecologia , Antropologia Cultural , Biodiversidade
13.
Plant Signal Behav ; 18(1): 2227440, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37366146

RESUMO

Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.


Assuntos
Compostos Orgânicos Voláteis , Resistência à Doença , Desenvolvimento Vegetal , Horticultura
14.
PLoS One ; 18(5): e0285604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167238

RESUMO

Product export provides an option for horticulture producers in Queensland (Australia) to diversify their market and increase returns from production. Vertical supply chain coordination in the form of contract-based marketing agreements between producers and export agents/distributors could facilitate increased export. The aim of this study was to investigate the willingness of horticulture producers to participate in export focused contract-based marketing agreements. To achieve this aim, a survey including a discrete choice experiment was conducted. The results from a mixed logit model and a latent class model suggest that there are three clusters of producers: a) the export interested, b) the likely risk averse, and c) those well established in the domestic markets. Only producers in group a) expressed a preference for contract-based export marketing agreements. These producers appear to be younger, already have some export experience, and have a relatively high level of collaboration in their product supply chains. Producers in groups b) and c) expressed an interest in stronger coordination within the domestic retail sector, potentially in the form of contract farming. Prices of produce and potential higher production costs are determinants identified by all producer groups as important for their decision-making about changes to their supply chain.


Assuntos
Agricultura , Marketing , Queensland , Austrália , Horticultura
15.
Artigo em Inglês | MEDLINE | ID: mdl-36673990

RESUMO

China, the largest country in vegetable supply, faces a transition to sustainable vegetable production to counteract resource waste and environmental pollution. However, there are knowledge gaps on the main constraints and how to achieve sustainable vegetable supply. Herein, we integrated the vegetable production and supply data in China, compared its current status with five horticulture-developed countries US, the Netherlands, Greece, Japan and South Korea, using data from the Food and Agriculture Organization (FAO) and National Bureau of Statistics of China, and predicted the vegetable supply in 2030 and 2050 by a model prediction. The vegetable supply in China increased from 592 g capita-1 d-1 in 1995 to 1262 g capita-1 d-1 in 2018 and will keep constant in 2030 and 2050. Compared to the five countries, the greater vegetable supply is primarily achieved by higher harvested areas rather than higher yield. However, it is predicted that the harvested areas will decrease by 13.6% and 24.7% in 2030 and 2050. Instead, steady increases in vegetable yield by 11.8% and 28.3% are predicted for this period. The high vegetable supply and greater vegetable preference indicated by the high vegetable-to-meat production ratio cannot guarantee recommended vegetable intake, potentially due to the high rate of vegetable loss and waste. Under the scenarios of decreased vegetable loss and waste, the harvested area will decrease by 37.3-67.2% in 2030 and 2050. This study points out that the sustainable transition of Chinese vegetable supply can be realized by enhancing yield and limiting vegetable loss and waste instead of expanding the harvested area.


Assuntos
Agricultura , Verduras , China , Poluição Ambiental , Horticultura , Abastecimento de Alimentos
16.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675060

RESUMO

Soil-borne Neosartorya spp. are the highly resilient sexual reproductive stage (teleomorph) of Aspergillus spp. Fungi of this genus are relevant components of root-associated microbial community, but they can also excrete mycotoxins and exhibit great resistance to high temperatures. Their ascospores easily transfer between soil and crops; thus, Neosartorya poses a danger to horticulture and food production, especially to the postharvest quality of fruits and vegetables. The spores are known to cause spoilage, mainly in raw fruit produce, juices, and pulps, despite undergoing pasteurization. However, these fungi can also participate in carbon transformation and sequestration, as well as plant protection in drought conditions. Many species have been identified and included in the genus, and yet some of them create taxonomical controversy due to their high similarity. This also contributes to Neosartorya spp. being easily mistaken for its anamorph, resulting in uncertain data within many studies. The review discusses also the factors shaping Neosartorya spp.'s resistance to temperature, preservatives, chemicals, and natural plant extracts, as well as presenting novel solutions to problems created by its resilient nature.


Assuntos
Temperatura Alta , Neosartorya , Microbiologia de Alimentos , Esporos Fúngicos , Horticultura
17.
Plant Dis ; 107(1): 67-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35724315

RESUMO

California contains a diverse flora, and knowledge of the pathogens that threaten those plants is essential to managing their long-term health. To better understand threats to California plant health, a meta-analysis of Phytophthora detections within the state was conducted using publicly available sequences as a primary source of data rather than published records. Accessions of internal transcribed spacer (ITS) ribosomal DNA were cataloged from 800 Californian Phytophthora isolates, analyzed, and determined to correspond to 80 taxa, including several phylogenetically distinct provisional species. A number of Phytophthora taxa not previously reported from California were identified, including 20 described species. Pathways of introduction and spread were analyzed by categorizing isolates' origins, grouped by land-use: (i) agriculture, (ii) forests and other natural ecosystems, (iii) horticulture and nurseries, or (iv) restoration outplantings. The pooled Phytophthora metacommunities of the restoration outplantings and horticulture land-use categories were the most similar, whereas the communities pooled from forests and agriculture were least similar. Phytophthora cactorum, P. pini, P. pseudocryptogea, and P. syringae were identified in all four land-use categories, while 13 species were found in three. P. gonapodyides was the most common species by number of ITS accessions and exhibited the greatest diversity of ITS haplotypes. P. cactorum, P. ramorum, and P. nicotianae were associated with the greatest number of host genera. In this analysis, the Phytophthora spp. most prevalent in California differ from those compiled from the scientific literature.


Assuntos
Ecossistema , Phytophthora , Phytophthora/genética , Florestas , Plantas , Agricultura , Horticultura , DNA Intergênico , California
18.
Opt Lett ; 48(1): 183-186, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563401

RESUMO

Luminescent solar concentrators (LSCs) have shown the ability to realize spectral conversion, which could tailor the solar spectrum to better match photosynthesis requirements. However, conventional LSCs are designed to trap, rather than extract, spectrally converted light. Here, we propose an effective method for improving outcoupling efficiency based on protruded and extruded micro-cone arrays patterned on the bottom surface of LSCs. Using Monte Carlo ray tracing, we estimate a maximum external quantum efficiency (EQE) of 37.73% for our horticulture LSC (HLSC), corresponding to 53.78% improvement relative to conventional, planar LSCs. Additionally, structured HLSCs provide diffuse light, which is beneficial for plant growth. Our micro-patterned surfaces provide a solution to light trapping in LSCs and a foundation for the practical application of HLSCs.


Assuntos
Horticultura , Luminescência , Método de Monte Carlo , Células Fotorreceptoras Retinianas Cones
19.
Plant Physiol Biochem ; 194: 708-721, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566710

RESUMO

Successful human space exploration requires more products than can be taken as payload. There is a need, therefore, for in-space circular manufacturing. Requirements for this include limited resource inflow, from either Earth or other planets and the generation of minimal waste. The provision of nutritious food is a clear need for human survival on the Moon or Mars and is one of the most complex to solve. Demand in large quantities, constant and reliable provision of food requires the development of specialist agricultural technologies. Here, we first review the history of space farming over the past five decades. This survey assesses the technologies which have been tested under the harsh conditions of space, identifying which modern horticultural components are applicable for in-space plant growth. We then outline which plants have been grown and under what conditions, and speculate upon the types of plants that could be selected to best nourish astronauts. Current systems are focussed on experimentation and exploration, but do not yet provide turn-key solutions for efficient food production within a long-term space exploration scenario. With that take, this review aims to provide a perspective on how an engineered closed circular environmental life-support system (ECCLES) might be constructed. To exemplify the latter, nutrient auto accumulation by biofortification is proposed through the integration of space farming and space mining, which is uncharted on Earth.


Assuntos
Voo Espacial , Astronave , Humanos , Planetas , Agricultura , Horticultura
20.
Environ Sci Pollut Res Int ; 30(4): 9066-9081, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437364

RESUMO

Ethiopia's floriculture industry is exceedingly emerging, and, currently, it ranks as the sixth largest exporter of roses worldwide and second largest in Africa. Currently, many flowers, such as rose, gypsophila, carnations, and chrysanthemum, are growing. However, floriculture farms are contributing a high level of health risks and environmental problems in Ethiopia. Thus, the purpose of this paper is to scrutinize the status and impacts of floriculture industries in Ethiopia. The floriculture division is an emerging sector in Ethiopia, and the number of farms, income, job opportunities, and diversity of flowers are increasing. However, the health risks and environmental fates of the sector are also increasing. Ethiopian floriculture farms lack waste disposal technologies and workers' protective equipment and safety, and the chemicals, plastics, and corrugated irons used in the farms are carelessly disposed everywhere. Pesticides, plastics, and fertilizers are also freely discharged into water bodies and terrestrial land, which is causing the development of health risks; aquatic life hazards; and soil, water, and air pollution. However, Ethiopia has no strong and functional system or structure to control the impacts of floriculture farms. The government and the farm owners are not thoughtful about the environmental issues, health concerns, and socioeconomic impacts of the wastes. The government lacks regular control and assessment of farms, and the farms are engaging for their profit. Nevertheless, developed countries are currently using both natural and modern technologies to manage floricultural wastes. Ethiopia should therefore suggest manageable possible approaches and sound management strategies based on the findings of the analyses.


Assuntos
Praguicidas , Humanos , Etiópia , Fazendas , Horticultura , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...